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Abstract: We describe research at the Stanford Dextrous Manipulation
Lab centered around haptic exploration of objects with robot hands. The
research areas include object acquisition and manipulation and object ex-
ploration with robot �ngers to measure surface features, textures and fric-
tion. We assume that the robot is semi-autonomous; it can receive guidance
or supervision from humans regarding object selection and grasp choice, but
is also equipped with algorithms for autonomous �ne manipulation, surface
exploration and feature identi�cation. The applications of this work include
object retrieval and identi�cation in remote or hazardous environments.

1. Introduction

Haptic exploration is an important mechanism by which humans learn about
the properties of unknown objects. Through the sense of touch, we are able to
learn about characteristics such as object shape, surface texture, sti�ness, and
temperature. Unlike vision or audition, human tactile sensing involves direct
interaction with objects being explored, often through a series of \exploratory
procedures" [7]. Dextrous robotic hands are being developed to emulate ex-
ploratory procedures for the applications of remote planetary exploration, un-
dersea salvage and repair, and other hazardous environment operations.

The challenges are formidable, including object detection and grasp plan-
ning, dextrous manipulation, tactile sensor development and algorithms for
surface exploration and feature identi�cation. As a consequence, fully au-
tonomous object acquisition and exploration are not yet practical outside of
carefully controlled laboratory experiments. At the other extreme, immersive
telemanipulation and tele-exploration impose demands on bandwidth of force
and tactile display that are not easily achieved, especially when the robot is
located remotely. Our own approach therefore follows a middle road in which
the robot is guided by humans but is also capable of some autonomous manip-
ulation, local surface exploration and feature identi�cation. Once the object is
in hand, surface properties are identi�ed and can also be replayed to human
operators.

We begin by presenting an approach in which human operators can guide
the process of grasping and manipulation using an instrumented glove, with
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Figure 1. Guided haptic exploration of a remote surface.

or without force feedback (Figure 1). Once the object has been grasped, the
robot can take over the task of surface exploration with occasional human
intervention. We present several methods for detecting di�erent surface prop-
erties. Features that are small (relative to the size of the robotic �ngertip) are
detected using intrinsic properties of the path traced by a spherical �ngertip
rolling or sliding over an object surface. Local texture pro�les are recorded with
a \�ngernail" stylus, providing statistical measures of the surface roughness.
Friction properties are estimated by measuring the relative velocities, accelera-
tions and forces between the �nger and the object during sliding. In addition,
we show preliminary work on how models obtained via haptic exploration can
be displayed through haptic feedback to users who may be located remotely.

2. Guiding Manipulation and Exploration

Haptic exploration requires stable manipulation and interaction with the object
being explored. We are developing an approach that provides the 
exibility of
telemanipulation and takes advantage of developments in autonomous manipu-
lation to reduce the required bandwidth for remote force and tactile display. A
human \guide" instructs the robot through demonstration. While wearing an
instrumented glove, the human reaches into a virtual environment (which may
be updated with information from a real environment), grasps a virtual object
and starts to manipulate it. The robot then determines the type of grasp used
and the desired object motion and maps these to the kinematics of its own
\hand".

There are several advantages to this approach. First, the interface is as
humanly intuitive as possible and exploits the user's understanding of stable
grasping and manipulation. The strategy is also 
exible, because a person can
quickly demonstrate a new maneuver. Meanwhile, the robot is performing the
details of manipulation and force control autonomously, allowing it to optimize
motions for its own capabilities and to respond immediately to information
about the grasp state which it receives from its sensors. Our work indicates
that when force information from the robot is displayed to the user, accurate
positional resolution and force control can be achieved [17].

The most signi�cant challenge is to obtain a best estimate of the intended
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Figure 2. (a) Kinematic model of the thumb and index �nger. (b) Modeled
and actual �ngertip trajectories.

object motion. Because tactile feedback from a virtual world is imperfect at
best, and possibly non-existent, the human user may make �nger motions that
are not consistent with a rigid object or even with stable manipulation. How-
ever, during a maneuver we can assume that the user wishes to maintain a
stable grasp. For a given motion of the user's �ngers, the inferred motion
of the virtual object is that which minimizes the error between the virtual
�ngers and measurements of the user's �ngers, while satisfying the kinematic
constraints of rolling, sliding and maintaining the grasp.

To assist in interpreting the motion of a human hand, we have developed
a kinematic model and calibration routine. The human hand model used here
(Figure 2a) is an adaptation of the models developed in [14] and [8]. The joints
are approximated as pure rotations, with the base joint on the thumb modeled
as a spherical joint. To calibrate the manipulation, the user wears a CyberGlove
from Virtual Technologies, Inc. which records the angular position of each joint
while manipulating an instrumented object. Knowledge of the object position
is used to infer the user's actual �ngertip position. The size of the user's hand
and any errors in the glove measurements are calculated with a least squares
�t [14].

Six users with disparate hand sizes were used to test the calibration pro-
cedure. Reliable calibration was achieved to within an average of 4mm of
measured �ngertip position. Figure 2b shows a typical post-calibration com-
parison of thumb and index tip trajectories. Further accuracy was limited by
errors in localizing the hand in space. An improved calibration device has been
developed, which will be presented in future work. The CyberGlove can also be
augmented with CyberGrasp, a force-re
ecting exoskeleton that adds resistive
force-feedback to each �nger. The addition of force-feedback will be used in



future experiments with guided manipulation.

3. Surface Properties

3.1. Small Surface Features

Through guided manipulation, a robot can explore various properties of the re-
mote environment. We consider the exploration three particular surface proper-
ties: small surface features, roughness, and friction. In this section, we present
a method for detecting small surface features with a spherical robotic �ngertip,
with or without the use of tactile sensors. The approach can be used with
guided or autonomous object exploration [13]. Although tactile sensing may
be needed for control, it can be shown that surface modeling and feature de-
tection can be accomplished without the use of tactile sensor data. We take
a di�erential geometry approach to surface feature de�nition, comparing the
principal curvatures of the object surface to the curvature of the �ngertip.

Imagine a round �ngertip rolling and sliding over the surface of an object.
As the �nger moves over the surface, the locus of points at the center point of
the �ngertip creates a parallel surface, whose principal curvatures are limited
by the radius of the �ngertip, rf . For example, if the original surface has a cusp,
the traced surface will have curvature 1

rf
around that point. In addition, there

may be parts of the original surface that are unreachable by the �ngertip, for
example, a pit in the surface with radius of curvature less than � 1

rf
, resulting

in a discontinuity in the parallel surface. An estimate of the original surface
can be calculated from the parallel surface by taking its parallel surface.

Features may then be extracted by comparing the curvature of either the
parallel or estimated surfaces to the curvature of the �ngertip. A curvature
feature, as detected by a spherical robotic �ngertip with radius rf , is a region
of a surface where one of the principle curvatures ki of the surface satis�es
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Figure 3. (a) Experimental apparatus for small surface feature detection. (b)
Feature detection with a robotic �nger rolling/sliding on a 45� surface with a
0.65 mm bump feature.



ki >= 1

rf
or ki <= � 1

rf
. These are the positive curvature (convex) and

negative curvature (concave) features, respectively. A discontinuity on the
parallel surface is especially useful for detecting negative curvature features
because it is a point with in�nite curvature. The simple curvature feature
de�nition can be extended to de�ne macro features, which consist of patterns
of curvature features. For example, a bump is de�ned as an area following
the pattern fnegative curvature featuregfpositive curvature featuregfnegative
curvature featureg as the �nger travels across the surface.

Experiments in using these de�nitions for feature detection were performed
by rolling and sliding a hemispherical �ngertip over a 
at surface with small
ridge features. The feature was created by stretching a 0.65mm wire over the
surface. The experiments were performed using two degree-of-freedom robotic
�ngers and 20mm diameter optical waveguide tactile sensors developed by
Maekawa, et al. [9, 10] (Figure 3a). For a more detailed description of the
experiments and apparatus, the reader is referred to [12].

As is typical of many robotic �ngers, the workspace was limited and thus
a combination of rolling and sliding was necessary to move the �ngers over the
surface of the object. A hybrid force/velocity control was used to obtain smooth
sliding over the surface. Because the �ngertip is spherical, the contact location
on the �nger gives the tangent and normal of the rigid surface. The velocity
of the �ngertip tangent to the surface and the force normal to the surface were
controlled using a simple proportional law. The �nger moved with an average
speed of 0.03 m/sec and a normal force of 1 � 0:01 N. Figure 3b shows the
parallel and estimated surfaces and features detected for a bump on a 
at
surface angled at 45 degrees, with a 0.65 mm diameter wire stretched across
the surface. The orientation of the object is the same as that in Figure 3a.

3.2. Surface Roughness

Below a certain scale, which depends on �ngertip size and tactile sensor resolu-
tion, the perception of individual features gives way to texture. The texture of
objects is an important part of their identi�cation. Experiments with humans
and robots alike have shown that the use of a \�ngernail" or stylus can be a
particularly e�ective way of characterizing textures [2]. An example applica-
tion is the exploration of rock surfaces in remote planetary geology. In order
to increase the sensations and science tools available to �eld geologists, NASA
has been interested in incorporating haptics into its robotic rover �eld tests.
Besides providing a new sensation available to geologists, it may also be pos-
sible to use haptics as a science tool to classify materials by measuring surface
properties such as texture and roughness.

Surface height pro�les are collected through a stylus or other sensor. In
Figure 4a we compare pro�les of test surface taken by a micro-machined stylus
[5], Omron laser displacement sensor, and the integrated velocity signal of a
phono cartridge stylus. The test surface was composed of �ve copper strips
approximately 0.125 mm thick with adhesive backing laid onto a circuit board.
While we were able to use the phono cartridge to capture the gross geometry of
the test surface by integrating its velocity signal, a consistent integration error
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Figure 4. (a) Surface pro�les of 
at copper strips taken by a micro-machined
stylus (top), laser displacement sensor (middle), and a phono cartridge stylus
(bottom). (b) Virtual stylus model.

falsely indicates a large slant in the test surface.

The collected data may subsequently be explored through a haptic inter-
face. Using a dynamic model of stylus to surface contact, forces are displayed
to a user resulting from interaction with the collected surface pro�le data.
One such model is shown in Figure 4b. We used this model to display virtual
rock surfaces to planetary geologists during a NASA Ames �eld experiment in
February 1999.

First a height pro�le as a function of position, yp(x), is collected by a sen-
sor. The stylus is then modeled as a mass, spring, damper system connected
to the vertical input of the user's haptic interface device, yi. The horizontal
position of the stylus is directly coupled to the horizontal position of the inter-
face. While in contact with the surface, the stylus dynamics are computed by
the following equation.

M �yp = K(yi � yp) + C( _yi � _yp) + Fy (1)

The constants were tuned for feel and stability to give virtual stylus pa-
rameters of K = 0:973 N

mm , C = 4:63� 10�5 N
mm=s , and M = 4:63� 10�5g.

The contact point of the stylus against the surface is modeled as friction-
less contact point. As illustrated by the magni�ed portion of Figure 4b, the
normal force Fn is perpendicular to the tangent at the contact point. The
tangent is computed by taking the derivative of the surface with respect to the
x coordinate system,

dyp
dx . In our application, this derivative is pre-computed,

as we know the surface pro�le a priori.

The normal force is the sum of two x and y component forces. The y

component represents the reaction force supporting the stylus mass from going
through the virtual surface vertically. The x component represents the hor-
izontal reaction force and is computed from the

dyp
dx as shown in Figure 4b.

While in contact with the surface, the user experiences Fx and Fy.



In practice, the lateral force Fx was scaled down to 5% of its full value.
We found that using full lateral forces induced strong vibrations that detracted
from the exploration of the surface. Not surprisingly, attempting to use a
model with only lateral forces [11] was found to be unsatisfactory for rock
surfaces. However, users who compared the models with and without lateral
forces found that a small amount of lateral force improved the simulation.
Interestingly, it has been claimed that surfaces modeled without friction feel
glassy [4]. Although we did not use friction in this model, none of the geologists
who used the system during the NASA �eld test or other users commented
that surfaces felt glassy or slippery. We believe that a small amount of force
opposing the user's horizontal motion, coupled with the irregularity of the
surface, eliminates a slippery feel by creating an illusion of friction.

3.3. Friction

Although friction may not be necessary for the display of geological surfaces
stroked by a hard stylus, it is an important component of the perception of
surfaces in other applications. In addition, adequate levels of friction are nec-
essary to ensure contact stability between an object and the �ngers that are
grasping it. Armstrong-Helouvry [1] is an overview of the issues involved in
friction measurement. Shulteis, et al. [15] show how data collected from a
telemanipulated robot can provide an estimate of the coe�cient of friction be-
tween two blocks; one being manipulated by the robot and the other being
at rest. Our own approach to the identi�cation of friction involves force and
acceleration measurements, in combination with a friction model.

The friction model used for the experiments presented below is a modi�ed
version of Karnopp's model [6]. This model includes both Coulomb and viscous
friction and allows for asymmetric friction values for positive and negative
velocities. It is distinct from the standard Coulomb + viscous friction model
because it allows the static friction condition to exist at non-zero velocity if the
magnitude of the velocity is less than a small, prede�ned value. The model is
expressed as

Ffriction( _x; Fa) =

8>><
>>:

Cnsgn( _x) + bn _x : _x < ��v
max (Dn; Fa) : ��v < _x < 0
min (Dp; Fa) : 0 < _x < �v

Cpsgn( _x) + bp _x : _x > �v

(2)

where
Cp and Cn are the positive and negative values of the dynamic friction,
bp and bn are the positive and negative values of the viscous friction,
_x is the relative velocity between the mating surfaces,
Dp and Dn are the positive and negative values of the static friction,
�v is the value below which the velocity is considered to be zero, and
Fa is the sum of non-frictional forces being applied to the system.

A one degree-of-freedom linear motion experiment was constructed in order
to conduct friction identi�cation experiments (See Figure 5). The friction and
mass of an aluminum block sliding on a sheet of rubber were estimated. The



Figure 5. Schematic (top view) of the experimental apparatus.

procedure for friction identi�cation can be summarized as follows: (1) Model
the force/motion interaction of the system, (2) Move system over a range of
velocities of interest, (3) Record force/motion variables included in the model,
and (4) Solve for unknown parameters of the system model.

For each friction measurement experiment the aluminum block was con-
nected to the apparatus and the apparatus was commanded to move with a
periodic trajectory. Various periodic trajectories having frequencies ranging
between of 0.5-3 Hz were explored. The trajectory presented here is a sinusoid
with a frequency of 2 Hz and an amplitude of 0.01 meters. Trajectory ampli-
tudes and frequency were selected to include the range of velocities for which
friction estimates were desired.

The system was exercised for 10 seconds prior to collecting data for each
experiment. This warm-up allowed the motion to come to steady state, and
also eliminated the phenomenon of rising static friction because the system was
not allowed to dwell at zero velocity for a signi�cant period. After the 10 second
warm-up was complete, the force applied to the aluminum block was recorded,
along with the block's position, velocity and acceleration. Data were collected
for 2 seconds, corresponding to four cycles and seven velocity reversals. The
sample rate for data collection and motion control was 1 kHz.

By expressing the parameters of our model as linear coe�cients of our in-
puts, the parameters can be estimated using least squares regression, or max-
imum likelihood methods. As a �rst step in expressing the model parameters
in a linear fashion, we separate the data into two bins. One bin contains data
for velocities of magnitude less than �v. The second bin holds the remaining
data. �v is selected as the smallest velocity range that fully encompasses the
transition from static to dynamic friction. After the data points corresponding
to low velocities are removed, the recorded velocity vector is split into two new
velocity vectors. The velocity vector velp is equal to the original vector vel ex-
cept that negative velocity values are replaced with zeros. The velocity vector
veln contains the negative portion of the original velocity vector and has zeros
where there are positive values in vel.

Now, the measured force can be expressed as the sum of the inertia force,
and the friction as

Fm = X� + � (3)
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Figure 6. (a) Measured force versus velocity for aluminum on rubber (four
motion cycles). (b) Measured force adjusted for mass and model of estimated
friction for aluminum on rubber.

where
Fm is the measured force,
X is a matrix of measured accelerations and velocities,
� is a vector of friction model parameters [m;Cp; bp; Cn; bn]

T , and
� is the measurement error.

Least squares regression assumes that the measured variables, acceleration
and velocity in our case, are free of measurement error. Fuller[3] presents several
alternate estimators that account for errors in the input variables and provide
unbiased estimates of �. Assuming that the errors in each of our measured
variables are independent of each other, � is estimated as

~� =
�
N�1XTX � �Suu

�
�1 �

N�1XTFm
�

(4)

where N is the number of samples,
�Suu = diag(s�a; 0; s�vel; 0; s�vel),
s�a is the estimated variance of the acceleration error, and
s�vel is the estimated variance of the velocity error.

A friction estimate was obtained by using the method outlined to identify
the friction and mass of an aluminum block sliding on rubber. The mass of the
block was presumed unknown for each experiment; however, for veri�cation
purposes the block was weighed and found to be 0.419kg. Figure 6a shows
the typical raw force data plotted against velocity. The e�ects of stick-slip
vibration are evident. Figure 6b shows the raw force adjusted for the estimated
mass. The solid lines in Figure 6b represent the predicted friction using the
parameters in Equation 2. The rectangular box shows �v, Dn and Dp.

4. Conclusion and Future Work

In this work, we have outlined an approach for guided manipulation and haptic
exploration using an instrumented glove, and presented various exploratory
procedures utilizing di�erent types of sensors.



In each of the sensing approaches, there is considerable future work in the
development and re�nement of detection schemes and haptic display algorithms
to play back surface properties. At present, the di�erent sensing methods have
been individually tested; the eventual goal is to create an integrated system
capable of using many di�erent sensors and exploratory procedures. Further
experiments in guided manipulation and haptic exploration are underway with
a pair of two degree-of-freedom robotic �ngers mounted on an Adept robot.
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